
University of Reading

Department of Computer Science

3/CS/6N - Computer Science Project

Final Project Report

'Velocity' 3D graphics engine

By Nicholas Holland

Supervisor: Dr J.A.D.W. Anderson.

 Second reader: Dr J.P. Thomas

5th May 99

Nicholas Holland

 2

Nicholas Holland

Abstract

3D graphics are becoming an essential part of most modern computer games. They

are used to add a greater sense of realism to the game playing experience. The aim of

this project was to create a 3D graphics engine which, could be used to form the basis

of a 3D game. More specifically a 3D driving simulation.

In order for a game to be playable, the graphics on the screen have to be updated

many times a second. An acceptable screen update is between 15 and 70 frames per

second. This constraint means that the 3D engine has to be able render as much as

possible within a short period of time. For this reason, it was decided that the 3D

engine would be programmed in Assembler for the Intel Pentium processor.

The project has used the prototype life cycle model. The prototype version of the 3D-

engine has been written in TopSpeed Modula-2. Due to the memory restrictions

imposed by Modula-2, some of the features found in the final system are not present

in the prototype.

The final system was originally designed to be implemented entirely in Assembly

language, unfortunately due to the complex nature of 3D graphics and time constraints

it has only been possible to implement the final system in Microsoft Visual C++ with

some inline assembler. If the project were to be continued, the aim would be to

convert almost all the C++ code in to assembler to increase execution speed.

Currently the final system is fully functional and working. It runs under Microsoft

Windows 95 / 98, as a Windows application. The 3D-engine has been configured for

use in two screen modes. The first mode works at a low screen resolution capable of

rendering images at a rate of up to 70 frames per second. The second mode works at a

high screen resolution rendering images at a rate of around 1 frame every five

seconds. Through out this report all the rendered images have been done using the

Velocity 3D engine in the high-resolution mode.

 3

Nicholas Holland

Abstract..2

2. Introduction to project and Specification..5

Introduction...5

Aims and Objectives..7

Review of published work...8

General statement of problem..9

3. Analysis and Design..10

Overview of the system...10

 Functional Requirements...10

 ...10

Non Functional Requirements..11

Detailed analysis..11

3D-engine Interface...12

3D file Parser...12

3D Transformations..12

3D object rendering ..13

Display functions...13

Design...15

3D engine interface..15

Data Design..16

3D object design...17

3D data structures...18

Data-Structure Overview..19

Parser Design...19

3D-transformations design..21

Scaling, Rotations and translations..23

Camera Co-ordinates..25

Perspective projection...26

Screen Transformation...27

Overview of Object transformations..28

DrawCar...28

Overall Design of the Transformations Component...29

3D Renderer...30

Basic Triangle drawing ..31

Clipping ...33

Triangle Clipping ...35

 4

Nicholas Holland

Depth Buffering ..36

Flat Shading...38

Gouraud Shading..39

Phong Shading...41

Lighting Models...41

Texture Mapping...42

Bi-linear interpolation...43

Super Sampling...44

Parser and data type changes...44

Design Overview of the 3D-Renderer..45

Design of Display Functions..46

Development and Implementation...47

Difficulties..48

Prototype component design...48

3D engine interface..48

Final system component design..49

Testing and Results ...51

Results of Validation testing...52

Errors found..52

System testing and Results ...53

7.Summary...54

Costing Summary..55

 5

Nicholas Holland

2. Introduction to project and Specification

Introduction

To understand how a 3D-engine fits in to a game such as a driving simulation it is

useful to take an overview of what components make such a game. The diagram

below shows the main components required to create a modern driving simulation for

the PC.

One of the most important components in the diagram is the 3D-engine. The 3D-

engine affects how the graphics in the simulator look and also what frame rate the

game runs at. The graphics of a game can determine whether it will be a commercial

success or failure. The first thing people look at when buying a new game is the

graphics. If the game has unrealistic slow graphics, then the game will be less

appealing compared to a game with fast realistic graphics. Other factors such as car

physics and artificial intelligence are considered to be of less importance in

comparison with the 3D-engine.

When developing a 3D game, most of the time and resources will be spent on

designing and implementing a 3D-engine because of the factors mention above. The

3D-engine is the most complex and critical component of the game.

 6

Car
Physics

Artificial
Intelligence

(computer cars)

Input
keyboard
joystick

Sound

Network,
playing

people over
a LAN

Driving
simulation

3D-engine

Nicholas Holland

Over the past five years games programmers have worked on developing highly

optimised 3D-engines with reasonable success. Despite this, the 3D-engine still

remains the most demanding component on the processor. For example, when

executing a 3D-game, around 50% of the processing time will be spent performing

calculations for the 3D-engine every frame. This leaves the other 50% of processing

time to perform all the other tasks. For this reason two changes are taking place in the

computer industry.

The first has been the introduction of graphics cards which, have built in processors

for rendering 3D-graphics. This allows for functions normally done in software by the

processor to be done in hardware by the graphics card. The result of which is that the

3D-engine requires less processor time, therefore increasing the frame rate.

The second change is in the processor market. Companies such as Intel, AMD and

Cyrix have started to include extra functions in their processor instruction sets to

speed up the operations required to process 3D graphics. For example the chip

manufacturer AMD [3] has produced a processor called the K6, 3D NOW. The AMD

processor contains extra instructions to perform hardware matrix operations. The extra

instructions are aimed specifically at 3D-games.

 7

Nicholas Holland

Aims and Objectives

The aim of the project is to write a 3D graphics engine in assembler for a driving

simulation. A 3D-engine can be broken down into four distinct sections as shown in

this diagram.

The objectives of the project were to design and implement all of the above sections

and provide an application programming interface (API) to them. The API should

allow the 3D-engine to be integrated into a game with the minimum amount of effort.

The API should be abstract enough to allow a person with average 3D knowledge to

be able to use it.

For the 3D-engine to be useable it has to be a fast. The aim of the project was to get

the 3D engine, running on a 300Mhz Pentium II, to draw at least 50,000 texture

mapped triangles to the screen every second. This means around 1600 triangles per

frame, when running at 30 frames per second.

Another objective is to make the 3D-engine as compatible and reliable as possible.

3D-engines perform a lot of mathematical calculations, there are a number of

situations where problems such as overflows, division by zero and memory leaks can

occur. This means extensive testing needs carrying out to make it as reliable as

possible. The 3D-engine should be compatible with all Pentium PC’s given that they

meet the minimum requirements of the 3D engine.

 8

Read in 3D
objects

Perform
transformations
on the objects

Rendering the
objects

Display objects
on to the screen

Nicholas Holland

Review of published work

The 3D graphics engine is extremely important to the success of a game. It controls

both the games visual appearance and how fast the game runs. These factors partly

depend on which techniques are used to manipulate and display 3D objects. This is a

list of various techniques that are used in a collection of the latest driving simulations

for the PC:

Technique used

Screamer 21 Motor Head [5] Grand Prix

Legends [6]

Colin McRae

Rally [7]

Flat shading
Yes No No No

Gouraud shading No Yes Yes Yes

Texture mapping Yes Yes Yes Yes

Environment

mapping

Yes No No Yes

Depth buffering Yes Yes Yes Yes

From the list, it was decided that the 3D engine would include flat shading, texture

mapping, Gouraud shading, environment mapping and depth buffering. The 3D-

engine would also include phong shading. The different techniques relate to how

objects are displayed on screen and what appearance they take on. In general, the

more features a 3D-engine the more realistic the graphics are.

From the review of the listed games it was also decided that the minimum

requirements for a PC to run the 3D-engine would be a Pentium 166, with 32MB of

RAM. This is the minimum requirement for all four of the games listed.

 9

Nicholas Holland

General statement of problem

“The term ‘engine’ is used to describe a piece of software that accepts data and acts

on that data. Three dimensional graphics engines use geometrical descriptions of

objects to produce rendered images on screen.” John De Goes, game devleoper[2]

In order to understand the problem it is necessary to break it down into the following

components:

The first stage involves reading in geometric representations of 3D objects from a file.

The design issues faced here are determining what type of file format to use. Whether

to use an existing file format, or create one. The format of the data structures used to

store the geometric data need to be determined. The second stage involves performing

mathematical transformations on the 3D data. For example, rotate object by 30

degrees to the left.

The third stage involves taking the transformed 3D data and rendering an image in

memory. The final stage involves initialising the graphics card in to a desired screen

resolution, then copying the rendered image from memory into the graphics card.

The main problem faced when writing a 3D-engine is performance. Stages 2,3 and 4

will execute every frame. In order to keep the frame-rate high, each stage has to

execute in a minimum amount of time. This means when implementing the 3D-engine

the code must be optimised as much as possible. This is the main reason for deciding

to implement the 3D-engine in Assembler.

 10

Read in
3D

objects

Perform
transformations
on the objects

Render the
objects

Display
objects on to
the screen

1 2 3 4

Nicholas Holland

3. Analysis and Design

Overview of the system

The purpose of the 3D-engine is to allow a programmer who is writing a driving

simulation to import it as a library, then use its functions to do all the 3D graphics for

the simulation. This diagram represents an example of the overall data flow in such a

system:

This project is only concerned with the flow of data between the 3D-engine and the

monitor. To understand what the 3D-engine should do, here is a list of the functional

and non-functional requirements.

 Functional Requirements

• Capable of reading files from a disk containing 3D geometric representations of

objects, then loading them into memory.

• Capable of performing 3D transformations on 3D objects.

• Capable of rendering the 3D objects, to be displayed on a monitor.

• Capable of interfacing with the graphics card to set various screen resolutions.

• Capable of using double buffering to produce smooth animation, without any

screen tears.

 11

Monitor

Driving
Simulation

Image displayed

Moves joystick Input
Car Physics

Artificial
intelligence

Sound

User

3D-engine

Sound
Speakers

Nicholas Holland

Non Functional Requirements

• Must be able to execute on a Pentium P166 PC running Windows 95/98 with

32Mb of RAM.

• When running the 3D-engine on a 300Mhz Pentium II it must be able to draw at

least 50,000 texture mapped triangles to the screen every second. This means

around 1600 triangles per frame, when running at 30 frames per second.

Detailed analysis

To understand exactly what the 3D-engine should do, it needs to be broken down into

its various component parts. Here is a more detailed view of the 3D-engine.

The above diagram is designed to give an outline of how the main components of the

3D-engine are linked together. The 3D-engine interface has control of all the other

components. The interface should be designed so that the programmer of the driving

simulation does not need to be aware, or have knowledge of the other components of

the 3D-engine. It should be as abstract as possible.

The following pages perform a detailed analysis on each of the components in the

diagram.

 12

3D-engine
Interface

(API)

3D-engine
Interface

(API)

3D file
Parser

3D
transformations

3D object
rendering

Display
functions

Monitor

Nicholas Holland

3D-engine Interface

The 3D-engine interface has to provide a complete set of functions for generating 3D-

graphics. This list outlines the main the functions required.

• Ability to load a new object. For example, LoadCar(“car3.dat”);

• Ability to scale, move and rotate an object in 3D space.

• Ability to draw an object to the screen

• Ability to set the screen resolution on the graphics card.

• Ability to allocate and de-allocate memory for the objects.

The aim of the functions is to make generating 3D-graphics as logical and simple as

possible.

3D file Parser

The file parser must be able to load files containing 3D data. The parser loads the 3D

information and stores it in memory. This component therefore only needs to supply

one function to the 3D-engine interface, that is LoadCar.

When creating a driving simulator there needs to be a way of modelling and

generating objects, such as cars. Rather than creating a modeller specifically for the

3D-engine, it is more practical to use an existing off the shelf modeller. Therefore

when the modeller is chosen, the parser must be able to read the files exported from it.

3D Transformations

The 3D-transformations component should provide a number of functions for

manipulating 3D objects. This list contains the functional requirements.

• Must provide a function for moving objects in 3D-space using rotation and

translations.

• Must provide functions for manipulating a camera, through which the objects are

rendered.

• Must provide a function called ‘DrawCar’ for drawing 3D-objects. This function

acts only as an interface to the 3D object rendering component.

 13

Nicholas Holland

3D object rendering

After a 3D object has undergone 3D transformation it then needs rendering.

The rendering phase is the stage where the object is actually drawn.

As the objects are rendered the pixels generated are stored in a screen buffer. If it the

pixels were to be displayed straight to the graphics card then it would be possible to

see the objects being drawn, an unwanted side-effect. The rendering stage is possibly

the most complex part of the 3D-engine. The following functional requirements are

designed to give an overview of what the renderer needs to do. The techniques listed

will be explained in full during the design phase.

Functional Requirements:

• Capable of drawing polygons

• Capable of performing the following shading algorithms: Flat, Gouraud and phong

shading.

• Capable of performing texture mapping and environment mapping.

• Must use a depth-buffer.

• Must use a screen buffer to draw the rendered image to.

Display functions

The display functions should be an interface between the 3D-engine and the graphics

card. The first function that is required is to set the graphics card to a desired

resolution. For example, a screen resolution 320 pixels wide by 200 pixels high with

24bit colour. The second function is to transfer the image held in the screen buffer to

the graphics card. Special care needs to be taken to ensure that certain side effects

such as screen tearing will not occur.

 14

RenderingRendering
Screen Buffer

3D data Pixels

Nicholas Holland

Screen tearing is a situation which, is caused by the lack of synchronisation between

the monitor and the graphics card. It occurs when contents of the graphics card is

updated while the electron gun in the monitor is scanning down the screen. The

picture on the monitor will have a different image on the top half to the bottom half.

For example:

Before the electron gun gets to the bottom of the screen the image held in the graphics

card is changed.

The overall affect is that the screen appears to look disjointed.

Here is a list of the functional and non-functional requirements for the display

functions:

Functional Requirements:

• Capable of setting various screen resolutions, ranging from 320x200 to 800x600

• Capable of copying the screen buffer into the graphics card and displaying it on

screen.

Non Functional Requirements:

• Should avoid screen tearing

• Must be compatible with most modern graphics cards manufactured within the last

two years.

 15

Graphics Card

Image 1.

Monitor

Electron gun scans down the
screen.

Graphics Card

Image 2.

Top half of screen contains
image 1.

Bottom half of the screen
contains Image 2.

Nicholas Holland

Design

The previous section on analysis was concerned with what the 3D-engine must do,

this next section on design is concerned with how the 3D-engine should work.

Taking into account the various functional requirements the next diagram gives an

overview of how the various components should be linked together.

The following pages will look at the design of each component in more detail.

 16

3D engine interface

LoadCar

3D Parser

LoadCar

MoveCar

3D Transformations

MoveCar

DrawCarDrawCar

3D Renderer

DrawPolygon

Display Functions

Set Screen Resolution

Display Screen
Buffer

Display
Screen
Buffer

Set screen
resolution

Graphics card

Screen Buffer

Monitor

Nicholas Holland

Data Design

Before being able to design the components that make a 3D-engine it is important to

design the data-types that will store the information. The design of the data structures

is a key element to how the 3D engine will function. To define the data-types it is

necessary to determine what actually makes a 3D object. Here is a quote from Josh

White, an expert in 3D modelling:

“Real-time 3D graphics are composed of points in space connected by simple

surfaces. The surfaces are always flat with straight edges (though they can appear

curved if we use lots of small ones). These surfaces are called polygons (means

“many sides”). The points are called “vertices”.

A very astute observer would take these definitions and realise that the world

of real-time 3D is composed of infinitely thin faces, like a paper shell, instead of solid

objects. Also, these thin faces are like one-way mirrors; they’re invisible from one

side. “

Therefore, an object is made up of vertices, which are connected together by

polygons. Here is an example of a very simple two polygon object.

The first major design issue that needs resolving is to decide what type of polygons

the 3D-engine should use. Some 3D-engines can draw n-sided polygons, while others

draw just three sided or four sided polygons.

 17

Vertices

2 Three-sided
polygons.

Nicholas Holland

After performing research into the area, it was decided that the 3D-engine would use 3

sided polygons (triangles). The algorithms for drawing triangles are generally faster

and easier to implement than for 4 sided or n-sided polygons. This is probably why

most 3D-games for the PC use triangles to draw objects as standard. This factor has

become even more evident in the past two years with the introduction of PC graphics

cards which have hardware acceleration specifically designed to draw triangles.

A single triangle consists of an infinitely thin face and 3 vertices. The triangle is only

visible from one side.

3D object design

One possible way of storing an object would be to have a list of faces. Each face is

then assigned three vertices, which define its structure. For example

This method will work, but is not particularly efficient. Rather than storing three

vertices for each face, it is more efficient to use indexes to a list of vertices. For

example, in the object below, if each face stored three vertices then a total of nine

vertices will be stored for the whole object. However if each face used an index to a

list of vertices then only five vertices would need storing for the object (vertex

sharing). This factor becomes very significant with large objects.

 18

Face 1

 X: -52.8 X: 0.0 X: -81.9

 Y: -52.8 Y: 0.0 Y: 49.3

 Z: -126.0 Z: 0.0 Z: 51.99

Face 2

 X: -352.8 X: 0.0 X: -81.9

 Y: -0.8 Y: 0.0 Y: 4.3

 Z: -26.0 Z: 4.0 Z: 3.99

Fac
e

 3 Vertices

Nicholas Holland

Face List

The above diagram shows how faces share vertices with other faces, A,B and C are

indexes to the vertex list.

3D data structures

Using the information about vertices and faces it is possible to construct the data
structure for a 3D object.

A face can be defined as follows:

 19

 3D Object

Name
Number of faces
Number of vertices
Array of vertices
Array of faces

X: -5 X: 3 X:-2 X: -2 X: 1 X:32 X: .. X: ..

Y: 7 Y: 4 Y: 0 Y: 54 Y: -2 Y:65 Y: .. Y: .

Z: -8 Z: 12 Z: 0 Z: -23 Z: 4 Z:3 Z: .. Z: ..

Vertex list

Face
1
A: 1
B: 4
C: 2

Face
2
A: 4
B: 5
C: 6

Face
n
A: n
B: n
C: n

 Face

Colour
Indexes to3 vertices:
A,B,C.

Nicholas Holland

The data structure for a single vertex is as follows:

A vertex contains two elements. One element is the ‘Object Co-ordinate’ which

represents the position of the vertex before any transformations have taken place. The

‘Object Co-ordinate’ is fixed to the value set by the parser when reading in a 3D

object from a file. The second element is called the ‘World co-ordinate’. At the

beginning of each frame, the ‘Object Co-ordinate’ is copied into the ‘World Co-

ordinate’. All transformations then take place on the ‘World Co-ordinate’. It is

effectively a temporary variable.

Data-Structure Overview

To give an overview of the data structure, here is a simple example of a square

represented as a 3D object.

Parser Design

After designing the data-structure for a 3D-object, the next logical stage is to design

the parser to fill the 3D-object with information.

The 3D-modeller selected to create 3D object files for the parser is 3D Studio by

AutoDesk. 3D Studio is a modelling tool that has almost become a computer games

industry standard. Companies such as Lucas Arts (Tie Fighter), WestWood Studios

(Command and Conquer), and Maxis (Sim City 2000) all use 3D Studio.

 20

 Vertex

Object Co-ordinate: X,Y,Z

World Co-ordinate: X,Y,Z

 3D Object

Name: Square
Number of faces: 2
Number of vertices: 4
Array of vertices
Array of faces

x: -5
y: 5
z: 0

x: 5
y: 5
z: 0

x: 5
y: -5
z: 0

x: 5
y: -5
z: 0

A: 0
B: 1
C: 2

A: 2
B: 3
C: 0

Nicholas Holland

3D studio has the ability to export 3D objects in a text-based format called ASC. The

layout of the ASC format is as follows:

Named object: "Object01"

Tri-mesh, Vertices: 7 Faces: 5

Vertex list:

Vertex 0: X: -52.875084 Y: -0.000018 Z: -81.956375

Vertex 1: X: -52.875084 Y: 0.000004 Z: 49.350079

Vertex 2: X: -126.018944 Y: 0.000004 Z: 51.993832

Vertex 3: X: -27.318792 Y: 0.000018 Z: 132.187698

Vertex 4: X: 91.650139 Y: 0.000004 Z: 50.231327

Vertex 5: X: -7.931263 Y: 0.000004 Z: 49.350079

Vertex 6: X: -2.643754 Y: -0.000018 Z: -81.956375

Face list:

Face 0: A:5 B:4 C:3

Face 1: A:3 B:2 C:1

Face 2: A:5 B:3 C:1

Face 3: A:0 B:6 C:5

Face 4: A:1 B:0 C:5

The first line contains the object name. The second line contains the word Tri Mesh.

This is short for triangle mesh and means that the object is made out of triangles. 3D

studio uses triangles as standard. The remainder of the line contains 'Vertices: 7

Faces: 5'. This represents that the object consists of 7 vertices and 5 faces.

Following that is a vertex list containing all the vertices used by the object. The

second section is the face list. Each face has a list of three variables A,B,C.

Each of these variables relates to a vertex, in the vertex list. For example, face 4 has

the following points

Face 4: A: 1 B:0 C:5

 21

Vertex 0: X: -52.8 Y: 0.0 Z: -81.9

Vertex 1: X: -52.8 Y: 0.0 Z: 49.3

Vertex 2: X: -126.0 Y: 0.0 Z: 51.99

Vertex 3: X: -27.3 Y: 0.0 Z: 132.1

Vertex 4: X: 91.6 Y: 0.0 Z: 50.2

Vertex 5: X: -7.93 Y: 0.0 Z: 49.35

Vertex 6: X: -2.64 Y: 0.0 Z: -81.95

Nicholas Holland

The layout of the ASC file format is very similar to the structure of a 3D-object.

Therefore parsing a ASC file should be fairly efficient. Here is a C prototype for

LoadCar function within the parser.

int LoadCar(char *FileName, 3D-Object *Car)

The function is passed a filename which, should refer to an ASC file in the current

directory. If the file is not found the function should return an error value to inform

the calling program. If the file exists, it should be opened. The parser should then read

the file and start adding data to the 3D-object. The 3D-object is passed to the function

as a pointer. If the file has been parsed successfully then a return value indicates this

to the calling program.

3D-transformations design

From the specification, the 3D-transformation component has to provide functions to

do the following

1. Object Scaling

2. Object rotation and translation

3. Camera manipulation

4. DrawCar function

In order to perform geometric operations on 3D graphics it is almost essential to use

matrices. Therefore the inclusion of a separate module specifically for performing

matrix operations is necessary.

Using matrices it is possible to scale, rotate and translate all the points in a 3D-object.

 22

3D
Transformations

MoveCar

Matrix module

Various matrix
operations.

Nicholas Holland

During the transformations that take place, the 3D-object has its ‘World Co-ordinates’

altered every frame. At the beginning of each frame the ‘World Co-ordinates’ need to

be reset, to equal the original ‘Object Co-ordinates’. If this did not happen the 3D-

engine would not work. For example, if a car is to be rotated 45 degrees one frame,

then 46 degrees the next and the co-ordinates were not reset, the car would end up

turning 91 degrees instead of the desired 46 degrees.

Here is an outline for the design of a reset function.

void Reset_Car(3D-Object *Car);
for n=0 to Number_of_Verticies do

VertexArray[n].World_Coordinate=VertexArray[n].Object_Coordinate

end;

After resetting the ‘World Co-ordinates’ of an object, the 3D-engine can start to

perform some transformations. The three transformations that can be performed are

scaling, rotation and translation. This diagram represents the transition that takes place

during the transformations.

Before any transformations take place, the object is said to be in an object co-ordinate

system, after the object transformations it is said to be in the world co-ordinate

system.

 23

Vertex

Object Co-ordinate: X,Y,Z

World Co-ordinate: X,Y,Z

Stays constant

Changes after every
transformation. Needs resetting
at the start of each frame.

Object Co-ordinates Object Transformations

Scaling, rotation,
translation

World Co-ordinates

Nicholas Holland

Scaling, Rotations and translations

To rotate, scale and translate objects, homogeneous co-ordinates should be used.

Expressing vertices in homogeneous co-ordinates allows us to represent all geometric

transformations as matrix multiplication. Each vertex in homogeneous form will have

four co-ordinates, they are reduced to three dimensions by the following

normalization operation.

[x , y, z, h] [x
h

y
h

z
h]

The most convenient way of performing co-ordinate transformations is to set up

matrices containing the parameters of the transformations, and use matrix

multiplication to reduce a series of transformations into a single transformation

matrix.

Here is an example of using matrices without matrix multiplication to reduce a series

of transformations into a single matrix.

Object

Each vertex in the object is multiplied by a matrix three times, once for each

transformation. Here is an example of using matrices with matrix multiplication to

reduce a series of transformations into a single matrix.

 24

Multiplied by
Rotation matrix

Rotation matrix
applied to all
vertices

Scale matrix applied
to all vertices

Translation matrix
applied to all
vertices

Scale matrix
Single matrix, containing
information to perform
both scaling and rotation Multiplied by

Translation matrix

Single matrix, containing
all transformation
information

Matrix applied to all
vertices in the object

Nicholas Holland

The end result of using matrix multiplication is that each vertex in the object is only

multiplied by a matrix once, considerably faster than three times as in the previous

method.

Therefore, to increase efficiency, the 3D engine performs all transformations on just

one matrix. The matrix is stored as part of the 3D-object and is called

'World_Position'. After all the transformations are complete the World_Position

matrix is multiplied with every vertex to give their new positions.

 Here is the pseudo code design for ScaleCar:

ScaleCar(Xfactor, Yfactor, Zfactor, 3D-Object *Car)

create_ScaleMatrix(Xfactor,Yfactor,Zfactor,TempMatrix);

MatrixMultiply(TempMatrix,Car.World_Position);

end;

The function MoveCar, performs both rotation and translation. Here is the pseudo

code design for it:

MoveCar(Xrot,Yrot,Zrot,Xdistance,Ydistanace,Zdistance,3D-Object *Car)

create_RotationMatrix(Xrot,Yrot,Zrot,RotationMatrix);

MatrixMultiply(RotationMatrix,Car.World_Position);

create_TranslationMatrix(Xdistance,Ydistance,Zdistance,TransMatrix);

MatrixMultiply(TransMatrix,Car.World_Position);

end;

 25

 3D Object

Name:
Number of faces
Number of vertices:
Array of vertices
Array of faces
World_Position

Nicholas Holland

Camera Co-ordinates

Before a frame can be draw, the 3D-object must be transformed from the world co-

ordinate system into a camera co-ordinate system. This is required because we need to

know where the object is in relation to the camera.

To define the camera co-ordinate system a function needs designing to position a

camera withing the world, and to define its orientation. The data-structure for a

camera is defined as follows:

TYPE Camera = RECORD

 Camera_Position
 Roll,Pitch,Swivel
 Focal_Length
 Camera_Trans:Matrix;

 END;

The Camera_Position specifies the position of the camera in 3D space. Roll, Pitch and

Swivel represent the cameras orientation, i.e. which way is it pointing. The

Focal_Length defines the focal length of the camera, adjusting this will adjust the

field of view. The Camera_Trans variable is similar to a 3D-objects World_Position

matrix except it is inverse, e.g. a translation followed by rotation.

Here is the pseudo code for setting the camera position:

Set_Camera_Position(Xpos,Ypos,Zpos,Focal,Xrot,Yrot,Zrot,Camera *Cam)

 Camera_Position.x:=Xpos;
 Camera_Position.y:=Ypos;
 Camera_Position.z:=Zpos;
 Pitch:=Xrot;
 Swivel:=Yrot;
 Roll:=Zrot;
 Focal_Length:=Focal;
 SetIdentity(World);

CreateInvMoveMatrix(Xrot,Yrot,Zrot,Xpos,Ypos,Zpos,World);

 Camera_Trans:=World;

end;

 26

Nicholas Holland

To convert from the world co-ordinate system to the camera co-ordinate system, the

world co-ordinate system is translated so that the camera view point is at the origin. It

is then rotated so that the camera is looking down the z-axis. When the function

SetCameraPosition is called, the matrix required to convert the world co-ordinate

system into the camera co-ordinate system is calculated. The matrix is stored in the

cameras data structure.

This is the pseudo code for the design of function to perform the world to camera co-

ordinate transformation.

 TransformCar(CarObject *Car; Camera *Cam);

 MatrixMultiply(Cam.Camera_Trans,Car.World_Position);
 ApplyObject(Vertices,No_Vertices,Car.World_Position);

end;

Because this is the last matrix transformation the object has to go through, the final

World_Position matrix is applied to all the vertices of the object.

Perspective projection

Once the world co-ordinate descriptions of the objects in a scene are converted to

camera co-ordinates, the 3D-objects need projecting onto a two dimensional image

plane.

 27

Object
Transformations

Scaling, rotation,
translation

Object
Co-ordinates

World
Co-ordinates Camera Transformation

(Translation + rotation)

Camera matrix
multiplied by objects
World_Position matrix

Camera
Co-ordinates

x

y

f -the focal length.

Plane of projection

Nicholas Holland

The formula for performing perspective projection on a vertex is:

 x' =
f × x

z
y' =

f × y
z

Where f represents the focal length of the camera. It is possible to use a perspective

transformation matrix and then normalises the four dimensional vector to obtain the

three-dimensional co-ordinates, to obtain the same results. However, normalising

requires three divisions, for each vertex, in comparison with two for just using the

formula stated. On a Pentium processor floating point divides can take up to three

times longer than floating point multiplication, they should be avoided if possible.

Therefore to speed up the above equations they can be replaced by

f
z

temp=¿ ¿
¿

 ; x' = temp ×x y'=temp× y ¿

.

This is the pseudo code design for the perspective projection function

Camera_Projection(CarObject *Car;Camera *Cam);

for n=0 to No_Verticies
 Temp=Cam.Focal_Length/ Car.VertexList[n].z;
 Car.VertexList[n].x= Car.VertexList[n].x*Temp;
 Car.VertexList[n].y= Car.VertexList[n].y*Temp;

end;

Screen Transformation

The final stage of the object transformation, is to convert the project screen co-

ordinates into device co-ordinates. In a 3D world, the origin should be in the centre of

the screen. However, the screen co-ordinates are displayed differently, for example:

To convert the 2D project co-ordinates this formula can be used.
 x=x+ ScreenWidth / 2;

y=(ScreenHeight/2) – y;

 28

(0,0) x

y
(0,0) x

y

Screen co-ordinates2D projected co-ordinates

Nicholas Holland

Overview of Object transformations

To understand the whole process that an object goes through before it is even

displayed can be involving. The following diagram shows an overview of all the

transformations that an object goes through. The diagram can be described as a

general 3D transformations pipeline.

DrawCar

The last function in the transformations component is DrawCar. DrawCar is an

interface to the 3D-renderer. The 3D-renderer is not aware of the 3D-object data

structure, it is only aware of faces and vertices. The aim is to make it as modular as

possible. The function has to perform two operations.

The first operation is to perform back-face culling to prepare the object for rendering.

As already discussed triangles are only single sided. Back face culling provides a

method of determining whether the triangle face is visible or not. It involves

calculating the normal of the triangle to determine which way it is facing. If the

normal is facing away from the viewer then the triangle is not rendered. The data

structure for a face, should have a flag added to represent whether the face is visible

or not.

The second function it is should perform is to go through the 3D-object sending each

face individually to the 3D-renderer.

 29

Object
transformation

Camera
transformation

Perspective
Projection

Screen
Conversion

Object
Co-ordinates

World
Co-ordinates

Camera
Co-ordinates

Projection
Co-ordinates Screen

Co-ordinates

Nicholas Holland

Overall Design of the Transformations Component

 30

Transform Module

ResetCar - resets world_coordinates back to object_co-ordinates

ScaleCar - scales the objects World_Matrix.

MoveCar – rotates and translates the objects World_Matrix

SetCameraPosition –sets the camera position.

TransformCar – Converts world co-ordinates into camera co-ordinates

 and applies World_Matrix to object vertices.

CameraProjection – performs perspective projection on to object

ConvertScreen – Converts all points in an object to screen co-ordinates.

DrawCar -interface to 3D-renderer.

3D engine
interface

Matrix Module

Matrix functions required.
SetIdentity
MatrixMultiply
Translate
Scale
CreateRotationMatrix
CreateMoveMatrix
CreateInvMoveMatrix
ApplyMatrix
ApplyObject – applies a matrix to
all the vertices in an object

3D –
Rendering

Nicholas Holland

3D Renderer

The 3D-renderer is concerned with drawing the final image. Here is a look again at

how it structured within the 3D-engine.

The 3D renderer should be designed to perform the following techniques:

• Flat shading.

• Gouraud shading.

• Phong shading.

• Depth Buffering

• Texture mapping.

• Environment mapping.

• Bi-linear interpolation.

• Three times over sampling.

The following pages take a look at the design of each of the above techniques. The

design stage starts with looking at how to draw a basic triangle.

 31

3D
Transformations

MoveCar

3D Renderer

DrawTriangle

Screen Buffer

3D engine
interface

Nicholas Holland

Basic Triangle drawing

The method of drawing triangles that should be used is a simple and fast scan

conversion technique. It will only work with triangles, it is not a general polygon

drawing algorithm.

A triangle consists of three co-ordinates. The first part of the algorithm sorts the three

co-ordinates in order of their y value. For doing this a simple function called

SortHeight should be implemented. The variable names used for the three co-

ordinates are V0,V1, V2. They are arranged in the following way.

Once they have been sorted by height the algorithm calculates which side of the

triangle is longest, the left side or the right side. Here is an example of the two

different arrangements.

Left side longest Right side longest

 32

0

y

V2

V1

V0

V0
V0

V1
V1

V2
V2

Nicholas Holland

The arrangement of the co-ordinates affects how the algorithm works, which is why it

is necessary to determine which side is longest. It performs the calculation by finding

the co-ordinates of the variable O, shown here.

If O. x - V1. x is negative then the left side is longest, otherwise the right side is

longest.

The next stage of the algorithm involves setting up two edge buffers. The edge buffers

are used to scan the edges of the triangle. They are defined as follows:

int LeftEdge [Screen_Height];

int RightEdge[Screen_Height];

The algorithm then works up through the triangle, increment y by one, storing the

positions of the edges in the edge buffer as it goes along. For example:

 RightEdge buffer

The triangle can then be displayed on to the screen using a very simple for loop.

This is the C code for it:

for (y=V2y;y<V0y+1;y++)
 {

SpanMin=LeftEdge[y];
SpanMax=RightEdge[y];

 for(x=SpanMin;p<SpanMax+1;x++)
 putpixel(x,y);
 };

 33

(0,0
)

LeftEdge
buffer

10

10
10
10

8
9
10

V1

V0

O

V2

Nicholas Holland

Clipping

Clipping is a way of making sure that nothing gets drawn outside the boundary of the

screen. Attempting to draw just one pixel outside the limits of the screen without any

control may cause the program to crash. To perform clipping it is necessary to first

define the clipping rectangle. The clipping rectangle should be the width and height of

the screen, however it is possible to define any region within the screen.

With the clipping rectangle defined it is necessary to test individual vertices to see

whether they are inside or outside the clipping rectangle. Every vertex is assigned a

binary code, called a region code, that identifies the location of the vertex relative to

the boundaries of the clipping rectangle. Here is a description of the regions:

The region code can be related to the bit position as

bit 1: left

bit 2: right

bit 3: down

bit 4: up

bit 5: in front of screen (view plane).

A value of 1 in any bit position indicates that the vertex is in that relative position. Bit

values in the region code are determined by comparing the vertices to the clip

boundaries. Bit 1 is set if x < left boundary.

 34

Screen
00000

00001

01001

00101

01000 01010

00010

0011000100

In front of
screen:
10000

Nicholas Holland

Once the region codes have been established it is possible to quickly determine which

triangles are completely inside and which are outside.

The first stage is to perform a logical OR on the region codes of the three vertices,

Temp = (V0.RegionCode) OR (V1.RegionCode) OR (V2.RegionCode).

If the value of Temp= 00000, then all the points of the triangle are within the clipping

rectangle, therefore the triangle will be displayed.

If the value is not 00000 then the triangle is definitely clipped, however part of the

triangle may still be visible, therefore it cannot be discarded just yet. Here are some

examples of situations where by all the vertices are outside the clipping rectangle, but

some of the triangle is still visible. These will be passed to the next clipping process.

Only if all the vertices are in the same region can the triangle be classed as definitely

outside the clipping rectangle. For example

By performing a logical AND on the vertices region codes it is possible to determine

whether they are contained within one region.

Temp = (V0.RegionCode) AND (V1.RegionCode) AND (V2.RegionCode)

If Temp is not equal to 00000 then the triangle is definitely out, and therefore will not

be drawn. If Temp is equal to 00000 then part of the triangle may be visible, but this

is not guarteed. The triangle will be passed to the triangle clipping process.

 35

Clipping
rectangle

Clipping
rectangle

Clipping
rectangle

Clipping
rectangle

Clipping
rectangle

Clipping
rectangle

Nicholas Holland

Triangle Clipping

If a triangle reaches this stage, it is still not known whether any part of it is visible or

not. For example, here are two triangles that have been passed to the triangle clipping

process. The vertices in both triangles have identical region codes, however one

triangle is partly visible, while the other is not.

The aim of triangle clipping is to remove everything which is not in the clipping

rectangle. For example:

This problem is not particularly difficult to solve if the renderer could draw n-sided

polygons. But as it can only draw triangles, the task becomes more involved.

The first stage involves creating five procedures, each clips a triangle against a

specific boundary. When a triangle is clipped against just one boundary, the clipping

routine may have to generate another triangle. For example, the triangle below is

passed to the left clipping routing, and is broken down into two triangles.

 36

Clipping
rectangle

Clipping
rectangle

Before After

Nicholas Holland

The order in which a triangle is clipped is, left, right, top, bottom and front plane

(going out of the screen).

Here is another example.

 Starting with just one triangle the clipping routine has a final image containing five

triangles. The clipping algorithm is similar to Sutherland-Hodgeman polygon clipping

algorithm, except it is complicated by the fact it can only draw triangles.

Depth Buffering

When drawing a 3D-scene, there has to be a way of determining which parts of the

scene are visible from the chosen viewing position. The algorithms are referred to as

visible-surface detection. The algorithm that most modern 3D-games use for visible-

surface detection is depth buffering. Depth buffering ensures that objects in the

distance do not appear in front of objects that are closer to the viewer. This method of

visible surface determination requires no surface sorting.

 37

Left Clipper

Triangle
subdivided in
two

Both triangles, are clipped by
the right clipper. Generating
another two triangles

All the triangles are then
clipped against the bottom
clipper. Producing the final
image.

Nicholas Holland

The depth-buffer method involves using two buffers. A depth buffer is used to store

the depth of pixels for each (x,y) position. A screen buffer is used to store the colours

of pixels for each (x,y) position. Triangles are scan-converted into the screen buffer in

arbitrary order. During the scan conversion process, if the depth of a pixel at (x,y) is

closer than the depth value held in the depth-buffer, then the new pixel depth and

colour replace the old values stored. In order to use the depth buffer, there first must

be a way of calculating the depth value of each pixel.

To calculate the depth for each pixel on the surface of a triangle can be time

consuming. However by using interpolation the process can be made a lot more

efficient. The techniques described here are almost identical to the ones used to deign

parts of Gouraud shading, Phong shading and texture mapping. They all use

interpolation.

The depth buffer works by calculating the depth along each edge of the triangle. The

depth value is then interpolated across between the two edges on each scan line. The

diagram below describes exactly how to implemented depth buffering.

 38

y

y
1

y
2

y
s

y
3

z
2

z
1

z
b

z
a

z
3

z
p Scan

Line

21

1
211)(

yy

yy
zzzz

s
a

−
−−−=

31

1
311)(

yy

yy
zzzz

s
b

−
−−−=

ab

pb
abbp

xx

xx
zzzz

−
−−−=)(

Interpolation of z values along polygon edges and scan lines

Nicholas Holland

To interpolate between two points, for example Z1 and Z2 only requires one division

with a number of additions. Here is an explanation:

From the diagram

Za = Z1 - (Z1 -Z2) * (y1 - yS) /(y1 - y2);

Or rearange slightly:

Za = Z1 -(y1 - ys) * (Z1 - Z2)/(y1 -y2);

(Z1 - Z2) / (y1 - y2) is constant therefore can be pre-calculated before scan conversion

of that edge starts. The final equation for calcualting the depth between Z1 and Z2 is

Za = Za -(y1-ys) * K

Where K is (Z1 - Z2) / (y1 - y2) which only needs calculating at the start of the

interpolation.

Once the depth of each edge is calculated, the renderer then interpolates between the

two edges across the scan line to produce the depth value of each pixel. The pixel can

then be tested to see if it will be accepted into the depth buffer.

Flat Shading

This is the simplest method of shading and also the fastest. The intensity value for

each triangle is calculated by using Lamertian reflection. The intensity is constant

across the surface of the triangle. The reflected light intensity is proportional to the

cosine of the angle between the normal of the triangle and the direction of the light.

For this approach to be valid the following assumption is true:

1. The light source and the viewer is at infinity, so that the angle between the normal

and the light is constant across the triangle face.

 39

θ

N
L

Nicholas Holland

Gouraud Shading

Gouraud shading renders a polygon surface by linearly interpolating intensity values

across the surface. Intensity values for each polygon are matched with the values of

adjacent polygons along common edges, this eliminates the intensity discontinuities of

flat shading.

Each surface is rendered with Gouraud shading by performing the following

calculations:

Determine the average unit normal vector at each polygon vertex

Apply an illumination model to each vertex to calculate vertex intensity

Linearly interpolate the vertex intensities over the surface of a polygon

At each triangle vertex, the normal vector is calculated by averaging the surface

normal of all triangles sharing that vertex. For example:

 40

3N

1N

vN

2N

4N

Normalised polygon surface normals

Nicholas Holland

After calculating the intensities of each vertex, the intensities are interpolated across

the triangle. The equations used to perform the interpolation are very similar to the

ones used to perform depth buffering. Thus making the implementation easier. Here is

a diagram containing the equations used to interpolate the intensities across a triangle.

Although Gouraud shading removes the intensity discontinuities associated with the

flat shading model, it does have its disadvantages. Highlights on the surface are

sometimes displayed with anomalous shapes, and the linear interpolation can cause

bright or dark intensity streaks , called Mach bands. These problems can be overcome

by using Phong shading.

An example of flat and Gouraud shading can be found in Appendix B. These two

images were rendered with the ‘Velcocity 3D’ engine in its high-resolution mode. The

object used is an oil filled lamp.

 41

y

y
1

y
2

y
s

y
3

I
2

I
1

i
b

I
a

I
3

I
p Scan

Line

21

1
211)(

yy

yy
IIII

s
a

−
−−−=

31

1
311)(

yy

yy
IIII

s
b

−
−−−=

ab

pb
abbp

xx

xx
IIII

−
−−−=)(

Intensity interpolation along polygon edges and scan lines

Nicholas Holland

Phong Shading

Phong shading displays more realistic highlights on a surface and greatly reduces the

Mach-band effect. A polygon surface is rendered with Phong shading using the

following steps:

• Determine the average unit normal vector at each polygon vertex

• Linearly interpolate the vertex normals over the surface of the polygon.

• Apply an illumination model to each point to calculate the pixel intensity

The first stage of Phong shading is already implemented as part of the Gouraud

shading.

To linearly interpolate the vertex normals over a triangle similar equations to Gouraud

shading should be used. Phong shading is a lot slower than Gouraud because instead

of interpolating just one value (the intensity), Phong interpolates the three values of a

normal.

Lighting Models

Lighting models are used to calculate the intensity of light seen at a given point on the

surface of an object. Currently flat shading and Gouraud shading are designed to use

diffuse reflection. Diffuse reflection is fine for surfaces that are dull, such as chalk,

but it is inadequate for shiny surfaces such as metals. When looking at an illuminated

shiny surface, such as polished metal, a high-light or bright spot, can be seen at

certain viewing directions. This phenomenon is called specular reflection. It is a result

of total, or near total reflection of incident light. A model for calculating specular

reflection is called the Phong specular-reflection model.

 42

Nicholas Holland

The intensity of specular reflection depends on the material properties of the surface

and the angle of incidence.

Here is a diagram of specular-reflection occurring on a surface.

L is the light vector, N is the normal to the surface, R is the reflection vector and V is

the view vector. The formula for specular reflection at a point is:

 I spec = Ks (V. R) ^n

Ks and n are dependent on the material. Therefore to perform specular-reflection the

value of V.R needs to be calculated. The value of V is already known, the value of R

can be found using this equation:

R= (2N . L)N -L

Texture Mapping

Texture mapping is a way of applying a raster image to a polygon to give a more

realistic appearance. The design to perform texture mapping uses linear interpolation.

This time to interpolate values of u and v across a triangle.

 43

u1

v

1

(0,0)

N

R

V

L

Texture space

(u,v)

(u,v)

(u,v)
Image space

Nicholas Holland

The values of u and v are calculated within 3D Studio and assigned to each vertex of

the triangle. Once the values of u and v are interpolated across a triangle the only

operation left to perform is to look up the colour of the texture at that particular point.

A pixel within a texture is called a texel (textured pixel).

As an addition to the texture mapping a method called bi-linear interpolation has been

included into the design.

Bi-linear interpolation

When texture mapping a polygon sometimes the situation occurs where individual

texels stretch over several pixels. This starts to happen as soon as the image space,

becomes larger than the texture space. One way to get around this problem is to use a

larger texture, however this is not always possible.

Bi-linear interpolation attempts to solve this problem by averaging the colour values

of the pixel being plotted over the four closet texels. The overall result is that a

triangle with a texture map on appears less blocky and more realistic.

 Environment Mapping

Environment mapping is becoming popular in 3D driving simulators to make the cars

look more realistic. In the context of a driving simulator it is used to show the

surrounding environment such as the sky and trees reflect from the side of the car.

The design for performing environment mapping is fairly simple. It involves loading a

texture, such as a landscape, calculating u and v texture values for each vertex, then

texture mapping the texture on to the object.

When the normal for a vertex has been calculated, the values of its texture co-

ordinates u and v are also calculated as follows,

U= (1/2)+Normal.x*(1/2)

V= (1/2)+Normal.y*(1/2)

This is not the most accurate way of performing environment mapping, because the

environment is not actually being mapped on to the car, just a texture map of a

landscape.

 44

Nicholas Holland

Super Sampling

To remove the jagged appearance of the edges of the triangles it is possible to use a

technique called super sampling. Super-sampling makes use of the property that alias

effects decrease with resolution. The 3D engine generates a picture at a higher

resolution than the output device can handle. The image is then mapped on to the real

screen by averaging the intensities over a certain area.

Super sampling is slow, the 3D-engine should only use it when operating in its high

resolution mode to produce high quality test images.

When the 3D-engine is in high-resolution mode all the frames are rendered at a

resolution of 2400 * 1800. The frame is then mapped down to a resolution of

800*600. In 3D graphics memory limitations can become a problem with super-

sampling. The problem arises because not only do you require extra memory to hold a

high-resolution image, but the depth buffer also needs to be set at the same high

resolution. For example, in the high-resolution mode the depth buffer is around 17

MBs.

Parser and data type changes

The design of the original parser needs modifying slightly at this stage to

accommodate for objects with texture co-ordinates. A texture mapped object has two

extra parameters at the end of each line, the u and v co-ordinates.

Vertex 240: X:14.010956 Y:-250.569992 Z:102.078682

U:0.733949 V:-0.204104

To accomadate the changes the data type of a vertex also needs changing slighlty so

that it now includes the texture co-ordinate. For example:

 45

Vertex

Object Co-ordinate: X,Y,Z

World Co-ordinate: X,Y,Z

Texture Co-ordinate: U,V

Nicholas Holland

Design Overview of the 3D-Renderer

To help understand how the various parts of the renderer fit together, here is an

overview:

 46

Screen Buffer

Triangle drawing module

DrawFlatTriangle – flat shaded.
DrawGouraudTriangle – Gouraud shaded.
DrawTextTriangle – Texture mapped.
DrawPhongTriangle – Phong shaded /
illuminated with environment mapping.

Triangle Clipping

Texture module.

LoadTexture.
GetTexel,
Bi-linear interpolate.

Depth Buffer

Depth Buffer Module

PutPixelDepth
Clear Depth Buffer

Display Functions

Set Screen
Resolution

Display Screen
Buffer

Nicholas Holland

Design of Display Functions

The requirements for the display functions are:

• Capable of setting various screen resolutions, ranging from 320x200 to 800x600

• Capable of copying the screen buffer into the graphics card and displaying it on

screen.

Most compilers provide functions for setting the screen resolution. For the prototype

version of the 3D-engine, it uses a Modula 2 command called, SetVideoMode. For the

Visual C++ version it uses a command called SetDisplayMode.

When copying the contents of the screen buffer to the graphics card it is essential that

the process is done as quickly as possible. At a screen resolution of 800x600 there are

480,000 pixels. If the process is slow, it will take a long time to copy the entire screen

buffer.

The best way to perform such a task is to use a straight memory copy, from main

memory into the memory on the graphics card. Avoiding using any compiler provided

functions such as put pixel. For the prototype version, just one command built into

Modula 2 called FastMove is used to copy the entire contents of the screen-buffer in

to the graphics card. Here is the pseudo code for it.

FastMove(ADDRESS(ScreenBuffer),ADDRESS(GraphicsCard^),64000);

The above line moves 64K of data used to store the screen at a resolution of 320x200

with 8 bit colour. To speed up the final C++ 3D-engine, the function is written in

assembler, to ensure it is as fast as possible.

As soon as the memory has been copied into the graphics card, it will be visible on

screen. To avoid screen tearing, the memory copy command should be used straight

after the monitor has just completed a full scan of the screen. The graphics card

provides a register that holds the status of the monitor. The program has to continually

poll it until the register is set to a value that represents the monitor has just completed

a scan.

 47

Nicholas Holland

Development and Implementation

To develop the 3D engine, the throw-away prototype model has been used.

The prototype version of the 3D-engine is written in TopSpeed Modula 2.

Unfortunately not all the functions found in the final version are present in the proto-

type. This was due to memory limitations. Modula 2, compiles 16 bit code for DOS.

This means that any variable created within the 3D engine can not be greater than

64K. This gives a limit to how many polygons a single object can contain. The other

memory limit is caused by the fact the program when executing can not be larger than

the 640k DOS limit. For these reasons the prototype can not do the following: Depth

Buffering, texture/environment mapping and any shading other than flat shading. It

renders at a screen resolution of 320 x 200, with a 256 colour look up table.

The final system has been written in Microsoft Visual C++ (Version 4) with some

inline assembler. The system runs as a Windows application, with a stub module

designed to test it. Originally the final system was going to be written entirely in

Assembler, but due to the complexity of 3D-graphics and the time constraints this was

unachievable.

 48

Done once then
thrown away

Feedback

Analyse System Objectives

Proper system development

Build prototype

Use prototype

Evaluate the results

Quick design of system

Nicholas Holland

Difficulties

The most difficulty experienced in the project involved the triangle clipping module

design and implementation. There is a wide range of material available about clipping

n-sided polygons, however, there seems to be an apparent lack of material on

performing 3D-triangle clipping. A possible reason is that most modern 3D-games

make use of hardware chips on a graphics card to clip and draw triangles. Therefore

removing the need to perform triangle clipping in software.

Prototype component design.

This diagram shows the various components of the 3D-engine, and how they relate to

the prototype files.

 49

3D engine interface

 Velocity.mod

3D Parser
LoadCar.mod
LoadCar.def

Velocity.def

3D Data Types
3D
Transformations

Transfm.mod
Transfm.def

Matrix functions
Matrix.mod
Matrix.def

3D Renderer + Triangle
Clipping

 Poly.mod
Poly.def

Clipping – region encoding only
Clipping.mod
Clipping.def

Display Functions

Display.mod
Display.def
VGA.mod
VGA.def
Palette.mod
Palettte.def

Nicholas Holland

Final system component design.

This shows all the components of the final 3D-engine put together. All the files are

listed here. Changes from prototype: Triangle clipping is now in a separate module to

the renderer, texture and depth buffer module implemented.

 50

3D engine interface

 Velocity.cpp

3D engine interface

 Velocity.cpp

3D Parser
Parser.h
Parser.cpp

3D Parser
Parser.h
Parser.cpp

3D Transformations

Transfm.h
Transfm.cpp

3D Transformations

Transfm.h
Transfm.cpp

Matrix functions
Matrix3D.h
Matrix3D.cpp

Matrix functions
Matrix3D.h
Matrix3D.cpp

3D Renderer

Poly.h
Poly.cpp
Phong.h
Phong.cpp

3D Renderer

Poly.h
Poly.cpp
Phong.h
Phong.cpp

Clipping Vertex
Triangle clipping Region encoding

Clipping.h
Clipping.cpp

Clipping Vertex
Triangle clipping Region encoding

Clipping.h
Clipping.cpp

3D Data types
3dstructs.h
3dstructs.cpp

3D Data types
3dstructs.h
3dstructs.cpp

Depth Buffer Module

Hi-resolution mode
800x600 3x over sampled
Ibuffer.h
Ibuffer.cpp
Low-resolution mode
320x200
Ibuffer2.h
Ibuffer2.cpp

Depth Buffer Module

Hi-resolution mode
800x600 3x over sampled
Ibuffer.h
Ibuffer.cpp
Low-resolution mode
320x200
Ibuffer2.h
Ibuffer2.cpp

Display
Functions

Display.h
Display.cpp

Display
Functions

Display.h
Display.cpp

Texture Module
texture.h
texture.cpp

Texture Module
texture.h
texture.cpp

Nicholas Holland

Program Specifications

Specification of the prototype

Operating enviroment: Dos / Windows 95/98

Computer required to run a demo: Intel 80486, 4Mb RAM, VGA graphics card.

Compiler: TopSpeed Modula 2.

Output. Output to the screen, set at a resolution of 320x200 with 8 bit colour.

Loads: .ASC 3D studio files

Specification of final system

Operating enviroment: Windows 95 /98

Computer required to run : Intel Pentium, 32Mb RAM, 4MB SVGA graphics card.

Compiler: Microsoft Visual C++ Version 4.

Output. Output to the screen, set at a resolution of 320x200 or 800x600 24 bit colour.

Loads: .ASC 3D studio files

The final system operates within the Windows 95/98 operating system. In order to use

the graphics card in Windows, the program uses a Windows API called DirectDraw.

DirectDraw allows the 3D-engine to interface with the graphics card, indepent of the

make or model.

In the main 3D-engine interface file “velocity.cpp” there is a certain amount of

Windows intialisation code. This project is not concerned with anything other than the

3D-engine. It is designed to be embedded within a 3D-driving simulator. Therefore

there will be no explanation on how the code to create a window works.

 51

Nicholas Holland

Testing and Results

As each component of the 3D-engine has been implemented, extensive testing has

been carried out. Four different testing strategies have been used in total.

The first strategy is unit testing. It involved writing drivers to test individual modules

and functions. The drivers are designed to test modules to make sure the interface is

working, the local data structures work and boundry conditions are correct. It also

attempts to test all independent paths. In a 3D-engine it is essential that each module

works correctly, if just one module gets an error then it may cause the whole engine to

fail.

 The second strategy used is called bottom-up integration. It involves the following

steps:

1. Low level modules are combined into clusters that perform a specific function.

2. A driver is written to co-ordinate test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the program

structure.

The third strategy used is validation testing. Validation testing provides final

assurance that the 3D-engine meets all functional, behavioural and performance

requirements.

The final strategy used is system testing. System testing verifies that all elements

mesh properly and that overall system/performance is achieved..

 52

Nicholas Holland

Results of Validation testing

The final system is capable of meeting all the following requirements defined in the

analysis.

• Capable of reading files from a disk containing 3D geometric representations of

objects, then loading them into memory.

• Capable of performing 3D transformations on 3D objects.

• Capable of rendering the 3D objects, to be displayed on a monitor.

• Capable of interfacing with the graphics card to set various screen resolutions.

• Capable of producing smooth animation, without any screen tears.

• Capable of executing on P166 PC running Windows 95/98 with 32Mb of RAM.

• When running the 3D-engine on a 300Mhz Pentium II it must be able to draw at

least 50,000 texture mapped triangles to the screen every second. This means

around 1600 triangles per frame, when running at 30 frames per second.

The last requirment was tested by rotating two texture mapped spheres both made

from 528 faces around the screen at 60 frames per second. This equals 63,360

textured mapped triangles drawn every second, exceeding the required amount. This

test was carried out in the low resolution mode.

Errors found

One of the best ways to test the 3D-engine is to compare what an object looks like

within 3D Studio, then compare it to how it looks after being drawn by the 3D-engine.

It was found during testing that although, the objects were displayed correctly, the

orientation was not correct. The problem was rectified by swapping the y and z values

around of each co-ordinate as the parser read an object in from a file. It was assumed

that the must have been a problem in the transformations stage causeing the

orientation to go wrong. However, later on during development the real reason for the

problem was discovered in a book on how to design 3D graphics, it contaians a the

following sentence,

“Tip: 3DS Studio swaps the Y and Z values of all vertices when it writes a .ASC

and .DXF files by defualt.” [reference]

Therefore around a weeks debugging in total was waisted trying to solve a problem

that didn’t exist.

 53

Nicholas Holland

System testing and Results

To test the functionality of the 3D-engine several real-time demos have been created

and executed. The aim of the testing was to try to make sure every single stage of the

3D-engine was working correctly.

For the purpose of this report a number of screen shots have been taken of objects

drawn by the 3D-engine in high-resolution mode, using super sampling. They are

included in Appendix B, titled ‘pictures’.

The screen shots show the use of the various shading algorithms described in the

design, including environment mapping They are proof that every module is working

correctly, as specified. If just one module was working incorrectly it would be almost

impossible to display an image to the screen. To show the parser is working correctly

three different objects are present in the results, an oil filled lamp, a Porsche 911 and

finally a 55 Porsche.

The first slide features two oil filled lamps, one is flat shaded, while the other is

Gouraud shaded. The slide is designed to show difference between the two shading

algorithms. The second slide features two oil filled lamps, one is phong shaded and

uses the specular reflection model to show a high-light. The second lamp is

environment mapped. The texture map used to environment map the lamp is just an

image of a sunset.

The third slide features a two lamps, both of which use a combination of phong

shading, and environment mapping. This time one of the lamps uses an environment

map of a picture taken of the sky.

The remaining slides contain pictures of a Porsche 911 and a 55 Porsche. The shell of

both cars are environment mapped to give a more realistic appearance. The windows

of the Porsche 911 use specular reflection to produce a glass like appearance. The

tires of both cars are phong shaded, as are do the headlights of the Porsche 911.

 54

Nicholas Holland

7.Summary

Costings/Estimates

Cost estimation using 3-Point LOC estimation technique

Main Requirements for a 3D graphics engine written in Modula 2

Lines of code Optimistic Most likely Pessimistic EV Actual

3D data parser 50 100 200 108.3 230

Object
manipulation

200 400 500 383.3 540

Polygon scan
conversion

50 100 200 108.3 820

Texture mip-
mapping

200 400 500 383.3 0

Depth buffering 200 300 500 316.6 0

+more

Total 1300 3700

EV = optimistic + most likely * 4 + pessimistic

Main Requirements for final 3D graphics engine written in assembler.

Lines of code Optimistic Most likely Pessimistic EV Actual (Visual
C++)

3D data parser 100 200 300 200 767

Object
manipulation

400 500 600 500 500

Polygon scan
conversion

100 150 200 150 2000

Texture mip-
mapping

300 500 600 483.3 200 (normal
mapping)

Depth buffering 200 400 600 400 200

+more

Total 1733 8500

Historic data indicates 620 lines of code can be written per month.

Estimated time for prototype = 2 months ,1300 LOC

Actual time for prototype = 6 months, 3700 LOC (almost 620 month)

Final system LOC = 8500 in 2 months, (LOC 4250 month)

 55

Nicholas Holland

Total lines of code estimated = 1300 + 1733 = 3033

Actual lines of code = 3700 + 8500 = 12200

Total time estimated = 3033 /620 = 4.89 months.

Actual time required if programming 620 LOC a month = 12200 / 620 = 19 months.

Costing Summary

The estimations made in the Preliminary were greatly underestimated. This is because

it is hard to estimate the work required to produce a project if the subject area is new

to the programmer. For this project the complexity of 3D-graphics were

underestimated, resulting in low estimates for the overall lines of code for the project.

The total lines of code is four times larger than estimated. One of the reasons for this

is that more features have been added to the 3D-engine than first concieved.

Conclusion

The final 3D-engine is fully working The requirements for it in terms of both

functional and non-functional have all been met. The only aim which has not been

achieved is to program the 3D-engine in Assembler. This decision, given the time

constraints was over ambitious. However, it is still believed that in order to achieve

the maximum performance, Assembler should still be used.

In terms of performance, the 3D-engine is fast when running in a low resolution

mode, achieving around 60 frames per second with an average 3D scene (2000

polygons) on a Pentium II 333. Despite this, it has trouble maintaining a frame rate of

above 15 frames per second when performing Phong shading on just small objects.

Therefore if the 3D-engine is to be integrated in to a driving simulator, the use of

Phong shading will have to be limited.

 56

Nicholas Holland

The objects rendered in the high-resolution mode look fairly realistic. By using super-

sampling the jagged edges normally associated with graphics have been smoothed

out. The only problem with super-sampling is that it is slow, and requires a lot of

memory. Therefore its use in a driving simulator may also be limited.

If the 3D-engine were to be continued, in view of recent technology the aim would be

to add hardware rendering to it, as an option. This would allow a graphics card with

hardware acceleration to perform most of the triangle rendering itself. Due to the

modular design of the 3D-engine, it would just require a module adding, to be

interfaced with the transformations module. Most 3D graphics cards include hardware

depth buffering as well, this would mean the depth buffer module written may not be

required.

Another feature which would be added is object hierarchy. Currently objects are

modelled as individual entities, there is no connection between them. In a driving

simulator the wheels should be separate objects that are connected to the car via some

form of link. When the car is moved forward, so should the wheels. The wheels

should then be able to rotate independently of the car, to simulate turning. Currently

this is not supported.

Summary

As already stated the 3D-engine meets all the requirements laid down. Despite this,

there are a number of future expansions that can be carried out to improve the project.

The most essential one is the use of hardware 3D accelerated graphics cards. The

requirements for the 3D-engine did not include the ability to make use of 3D graphics

cards because when the project was started a year ago they were not widely excepted.

Now, however almost every OEM PC made contains a graphics card which can

perform 3D hardware acceleration.

 57

Nicholas Holland

References

[1] Playstation, produced by Sony.

[2] Nintendo 64, produced by Nintendo.

[3] AMD K6 3D NOW, produced by AMD.

[4] Screamer 2 is by Milestone. Published by Virgin Interactive Entertainment

(Europe) Ltd. 2 Kensignton Square, London, W8 5RB.

[5] Motorhead is published by Gremlin Interactive LTD.

[6] Grand Prix Legends, published by Sierra.

[7] Colin McRae Rally is written and published by Codemasters.

[8] Daytona 2, is produced by SEGA. Polygon figures for Daytona 2 came from

June 98 edition of EDGE magazine. Published by Future Publishing.

[9] Windows 95, is made Microsoft.

[10] 3D Studio Release 4c1 by Autodesk.

Bibliography

D. Hearn, M. Baker (1997) Computer Graphics, Prentice Hall.

J. White (1996) Designing 3D Graphics, Wiley. P17

J. Goes (1996) 3D Game Programming, Corilolis Group.

P.Burger, D. Gillies (1994) Interactive Computer Graphics, Addison Wesley.

B. Cornelius (1994) TopSpeed Modula-2, Addison Wesley.

 58

Nicholas Holland

 59

1

